Neuroprotective agents, Natural Plant Herbs & Drugs in Ischemic Stroke: A Review

Nesar Ahmad*, Zafar Khan, Noorul Hasan, Abdul Basit, Seikh Zohrameena Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, UP, India * nesar50@gmail.com

ABSTRACT

Stroke is a destructive experience which can result in permanent disability in brain. There is no permanent drug which can improve the blood flow at infracted area and also improve the neurological deficit. Due to the lack of treatments available for stroke, many researchers will investigate the suitable plants or drugs for the treatment of this disease. Numerous medicinal plants and herbal drugs are available to treat stroke, some of the plants are Ginkgo biloba, Fructus Chebulae, Pomegranate, Rosa laevigata, Garlic, Leonurus heterophyllus, Olive, Grape, Allium cepa, drugs such as Pravastatin, Senkyunolide I, Phloretin, Mgso4, HAMI 3379, Oleoylethanolamie, scopolamine and mecamylamine, Nitric Oxide, N-nitro-L-arginine methyl ester (L-NAME), 3,5,6,7,8,3',4'-Heptamethoxy flavones, Rosiglitazone, Puerarin, the activity was estimated by parameters like superoxide dismutase (SOD) activity, Hemispheric swelling index (cerebral edema), H2O2 induced cell injury, OGD-R induced cell injury, superoxide dismutase and glutathione peroxidises, mitochondrial membrane potential, Western blotting assay, ROS scavenging assays, Superoxide anion scavenging assay, Hydroxyl radical scavenging assay, H2O2 scavenging assay, Singlet oxygen scavenging assay, Peroxyl radical scavenging assay, Peroxynitrite anion scavenging assay, myeloperoxidase (MPO) activity, blood-brain barrier integrity, cerebral infarct size, in Situ Apoptosis Detection, Western blotting, SOD, GSH, glutathione peroxidase, and MDA levels, Reverse transcription polymerase chain reaction (RT-PCR), Lactate dehydrogenase activity assay, Determination of caspase activity, acetylcholinesterase (AChE) activity, Determination of choline acetyltransferase activity (ChAT), Cell viability, Oxygen glucose deprivation/reperfusion assay, Flow cytometry, Immunohistochemistry. The present review focused on different medicinal plants and drugs that have been tested in Stroke in animal models.

Keywords: Dose, BCCAO, MCAO, Nitric Oxide, Neurological, Stroke.

INTRODUCTION

Stroke, the major cause of death and disability, is regarded as the important problem in developing countries [1]. Frequent incidences of cerebral ischemia are seen in age-related disorders, hypoxicischemic brain injury, carotid artery pathologies, asphyxiation and shock etc. It is a devastating event that is associated with great morbidity (Madl and Holzer, 2004). In certain clinical situations such as transient global cerebral ischemia anticipates or even induced iatrogenically during cardiac or thoracic surgery. Permanent ligation of bilateral common carotid arteries is a well known model used to study cerebral ischemia (Choe et al., 2001). Bilateral common carotid artery occlusion (BCCAO) causes moderate and most likely permanent reduction of cortical and cerebral blood flow in diverse areas of brain (Jeon et al., 2004). Despite the

importance of stroke and the advances of technologies nowadays. The prophylactic protection against stroke with neuroprotective agents has gained much attention. Cerebral ischemia is characterized by a rapid onset of neurological injury due to interruption of blood flow to the brain [2]. This injury has been reported to be associated with the action and interaction of many factors such as excitatory amino acids, calcium overloading, and oxidative stress damage, periphery depolarization of infarction, neuroinflammation, and apoptosis [3-5]. However, accumulative lines of evidence in this decade point out to the crucial role of oxidative stress. It has been reported that the reduction of cerebral blood flow and the reperfusion period induce the elevation of oxidative stress and lipid peroxidation [6-9]. Interestingly, both in vitro and in vivo data have demonstrated that this injury can be

How to cite this article: Ahmad N, Khan Z, Hasan N, Basit A, Zohrameena S; Neuroprotective agents, Natural Plant Herbs & Drugs in Ischemic Stroke: A Review; PharmaTutor; 2017; 5(5); 29-36

PharmaTutor

protected by polyphenolics including flavonoids [7, 8, 10–13]. *Ginkgo biloba* belonging to the family **Ginkgoaceae** which can improve cerebral oxygen supply, decrease cerebral oxygen extraction rate and consumption, and reduce cerebral oxygen metabolic rate[14].*Fructus Chebulae* decreases the cerebral infarct volume and extent of hemisphere swelling[15]. **Pomegranate** decrease brain levels of NF-κB p65, TNF-α, caspase-3 and increased brain levels of IL-10, and cerebral ATP roduction[16]. **Pravastatin** drug which used for the proportion of

viable neuronal cells after ischemia was greater in the pravastatin vs. control group, with greater expression of apoptotic cells in the control vs. pravastatin group. Bax protein expression was significantly decreased; Bcl-2 expression was increased, but not significantly [17]. **Puerarin** is a drug which is used for treatment significantly improved the phosphorylation level of AKT in dosedependent, reduced the infarct volume, the number of Nissl body, and cleaved caspase-3 and GFAP positive cells increased [18].

Name of plant Herbs	Dose	Model	Parameters	Result
Ginkgo biloba	1 mg/kg	Hypoperfusin in	CaO2, SjvO2 and CEO2,	Ginkgo biloba extract can
		elderly patients	Glua, Laca, superoxide	improve cerebral oxygen
			dismutase (SOD) activity.	supply, decrease cerebral
				oxygen extraction rate and
				consumption, and reduce
100				cerebral oxygen metabolic
				rate [14].
Fructus Chebulae	300,	MCAO, 90min,	Hemispheric swelling	Fructus Chebulae extract
	500	reperfusion 24hr	index (cerebral edema),	increases the PC12 cell
	mg/kg.		H2O2 induced cell injury,	survival against OGD-R
			OGD-R induced cell injury.	and H2O2. Fructus
TAPA KEP				Chebulae also decreases
				the cerebral infarct
				volume and extent of
				hemisphere swelling [15].
Pomegranate	250,	BCCAO,	Determination of brain	Reduction in brain
633	500	60 min,	nitric oxide, superoxide	contents of MDA, and NO,
	mg/kg.	Reperfusion 60	dismutase and glutathione	in addition to
Charles and the		min	peroxidises, glutathione	enhancement of SOD,
			reductase, brain	GPX, and GRD.
			cytokines.	Pomegranate extract
				decreased brain levels of
				NF-κB p65, TNF-α,
				caspase-3 and increased
				brain levels of IL-10, and
				cerebral ATP roduction.
				Comet assay showed less
				brain DNA damage [16].
Rosa laevigata	50, 100	MCAO	DAPI staining, TUNEL	Prevented I/R-induced
	and 200	reperfusion 24hr	assay, Determination of	disability and histological
withing the	mg/kg		mitochondrial membrane	damage, significantly
			potential, Western	decreased DNA
			blotting assay,	fragmentation, up-
			Immunohistochemisty	regulated the expression
Denies and (Den / Antipity)				of Bcl-2, and down-

30

Garlic360 mg/kg. i.p.MCAO for 2hr mg/kg. i.p.ROS scavenging assay, Superoxide anion scavenging assay, Hydroxyl radical scavenging assay, Hydroxyl radical scavenging assay, H2O2 scavenging assay, Hydroxyl radical scavenging assay, H2O2 scavenging assay, Peroxynitrite anion scavenging assayExtract decreased mRN expression of NR1- and NP2B-NMDA-receptor synthesis. Antioxidants present in garlic extract may regulate ROS concentrations during ischemia, favour pro- survival pathways, and attenuate mitochondria deficit scores, reducing t infarct volume and MPI content. LHAE significantly decreased the NO level.		r	r		
Garlic360 mg/kg. i.p.MCAO for 2hrROS scavenging assays, Superoxide anion scavenging assay, Hydroxyl radical scavenging assay, H2O2 scavenging assay, H2O2 scavenging assay, H2O2 scavenging assay, H2O2 scavenging assay, H2O2 scavenging assay, Peroxyl radical scavenging assay, Peroxyl ritie anion scavenging assayExtracts decreased mRN expression of NR1- and NR2B-NMDA-receptor subunits and prevented ischemia-induced reduction in mitochondr potential and in ATP synthesis. Antioxidants present in garlic extract may regulate ROS concentrations during ischemia, favour pro- survival pathways, and attenuate mitochondria dysfunction [20].Leonurus heterophyllus3.6, 7.2, 14.4 mg/kgMCAO for 2 hr, reperfusion 24hrMeasurement of NO metabolite in the brain, The apoptosis ratio of nerve fiber in the brains mensurate,LHAE significantly decreased the NO level.					FasL, Bax, Bid, cytochrome C and active Caspase-3. Moreover, decreased the expressions of NF-jB, iNOS MMP-9, COX-2, TNF-a, IL- 1b, IL-4, IL-6, and down- regulated the levels of p- JNK, p-ERK and in MAPK
heterophyllus7.2, 14.4 mg/kgreperfusion 24hrmyeloperoxidase (MPO) activity, Measurement of NO metabolite in the brain, The apoptosis ratio of nerve fiber in the brains mensurate,decreasing neurological deficit scores, reducing t infarct volume and MPC content. LHAE at 14.4 mg/kg significantly decreased the NO level.		mg/kg. i.p.		Superoxide anion scavenging assay, Hydroxyl radical scavenging assay, H2O2 scavenging assay, Singlet oxygen scavenging assay, Peroxyl radical scavenging assay, Peroxynitrite anion scavenging assay	Extracts decreased mRNA expression of NR1- and NR2B-NMDA-receptor subunits and prevented ischemia-induced reduction in mitochondrial potential and in ATP synthesis. Antioxidants present in garlic extracts may regulate ROS concentrations during ischemia, favour pro- survival pathways, and attenuate mitochondrial dysfunction [20].
significantly decreased the apoptosis ratio of nerver fiber [21].		7.2, 14.4	reperfusion 24hr	myeloperoxidase (MPO) activity, Measurement of NO metabolite in the brain, The apoptosis ratio of nerve fiber in the brains mensurate,	decreasing neurological deficit scores, reducing the infarct volume and MPO content. LHAE at 14.4 mg/kg significantly decreased the NO level. In addition, LHAE significantly decreased the apoptosis ratio of nerve fiber [21].
and 100 mg/kg reperfusion 24hr Normal motor function, failure to extend forepaw; loss of righting reflex; no activity. Biochemical parameters, Lipid profiles, Assessment of brain water content, blood-brain barrier integrity	Olive	and 100		Normal motor function, failure to extend forepaw; loss of righting reflex; no spontaneous motor activity. Biochemical parameters, Lipid profiles, Assessment of brain water content, blood-brain	edema, blood-brain barrier permeability, and improves neurologic deficit scores [22].
Grape30BCCAO for 5 min, reperfusion 4Behavioural parameters- Assessment of locomotorGPE resulted in hyperlocomotion,	Grape			Behavioural parameters-	

PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881

		days	activity, Biochemical	extensive DND, oxidative
A PORO			parameters- Assessment	and fragmented DNA
			of neurons, astrocytes and	damage, and an increase
MC KUL V			microglial cells, DAPI	in reactive astrocytes and
CHALLA			staining to assess nuclear	microglial cells in the
A A DA			DNA damage, 8-OHdG	hippocampal CA1
			immunohistochemistry to	region[23].
			identify oxidized DNA	
Allium cepa	100 and	BCCAO for 10	Behavioural parameters-	A. cepa bulb markedly
	200	min, reperfusion	Elevated plus maze,	reduced cerebral infarct
X // /A // /	mg/kg	24 hr	Inclined beam walking	size and attenuated
			test, Lateral push test	impairment in short-term
			Biochemical parameters-	memory and motor
			Estimation of	coordination. marked
To the to the			thiobarbituric acid	decrease in mitochondrial
			reactive substance	TBARS [24].
			(TBARS), Assessment of	
			cerebral infarct size,	

Drug	Dose	Model	Parameters	Result
Pravastatin	1 mg/kg	BCCAO for 8 min.	In Situ Apoptosis Detection, Western blotting.	The proportion of viable neuronal cells after ischemia was greater in the pravastatin vs. control group, with greater expression of apoptotic cells in the control vs. pravastatin group. Bax protein expression was significantly decreased whereas, Bcl-2 expression was increased, but not significantly[17].
Senkyunolide I	36 and 72 mg/kg	MCAO	Neurological function assessment, Measurement of brain water content, Detection of reporter gene activity	SEI administration significantly ameliorated the neurological deficit, reduced the infarct volume and brain edema, reversed the cerebralmorphologicdamage,decreasedthe levels of MDA and increased the activities of superoxide dismutase [25].
Phloretin H H	20, 40, and 80 mg/kg	MCAO	Determination of SOD, GSH, glutathione peroxidase, and MDA levels, Reverse transcription polymerase chain reaction (RT-PCR), Western blot analysis	Phloretin significantly reduced infarct volume, brain edema, and ameliorated neurological scores. SOD, GSH and GSH-Px activities were greatly decreased, and MDA levels significantly increased. However, phloretin pretreatment dramatically suppressed these oxidative stress processes. Furthermore, phloretin up regulated Nrf2 mRNA and protein expression [26].

PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881

	-			
Mgso4	1	BCCAO	Mitochondrial	The MgSO4 reduced the perimeter of
	mmol/k	for 10-	isolation and AFM	ischemic mitochondria. The length, width
-o—s=o	g	min	measurement, Nissl	and area were significantly different.
		reperfusi	staining	Besides, the adhesion force of isolated
Ó-		on 72 hr		mitochondria from the MgSO4 group was
M_g^{++}				close[27].
HAMI 3379	0.025,	MCAO for	Behavioural	It attenuated the neurological deficits, and
	0.05,	60 min,24	parameters Inclined	reduced infarct volume, brain edema, and
	0.1, 0.2	or 72 hr	board test	neuronal loss and degeneration. HAMI
	and 0.4	reperfusi	Biochemical	3379 inhibited release of the cytokines IL-
	mg/kg	on	parameter-	1b, interferon-c (IFN-c), and tumor
	IIIg/ Kg	on	Cytokine assay	necrosis factor-a (TNF-a) into the serum
			Cytokine assay	and cerebrospinal fluid, microglial
				activation and neutrophil accumulation,
				-
				inhibited astrocyte proliferation and
	20		Data ta sal	reduced serum IL-4 [28].
Oleoylethanolamie	30 mg/kg	MCAO.	Behavioural	OEA markedly increased the expressions of
	mg/kg	For 120	parameters Morris	brain-derived neurotrophic factor (BDNF)
		min, 24 hr	water maze test,	and peroxisome proliferator-activated
		reperfusi	Electrophysiological	receptors α(PPAR α). Chronic OEA
		on	recordings,	treatment can exert functional recovery of
			Biochemical	cognitive impairments and
			parameters-	neuroprotective effects via triggering of
			Immunohistochemist	neurogenesis in the hippocampus [29].
			y and cell counting,	
	0.1 //		Western blot	
scopolamine and	0.1mg/k	BCCAO	Behavioural	Scopolamine and mecamylamine alters
mecamylamine	g,	for 45	parameters Morris	memory functions following GCI/R injury
	0.5mg/k	min,	water maze,	substantiating the combined functional
	g	reperfusi	Biochemical	importance of both muscarinic and
		on for 8	parameters-Lactate	nicotinic receptor modulation in memory
0		days.	dehydrogenase	dysfunction [30].
0			activity assay,	
н			Determination of	
			caspase activity,	
			acetylcholinesterase	
			(AChE) activity,	
			Determination of	
			choline	
			acetyltransferase	
		DCCAO	activity (ChAT)	
Nitric Oxide, N-		BCCAO	Rat brain	Increased NO concentration, CBF
nitro-L-arginine		for 10	hippocampus cell	significantly. Reduced infarct size and
methyl ester (L-		min, 24 h	dissociation, Flow	down regulated the cell death and reduced
NAME),		reperfusi	cytometric analysis, infarct volume	the brain injuries [31].
		on		
			measurement, Nitric	
			Oxide detection in	
			vivo	

PRINT ISSN: 2394-6679 | E-ISSN: 2347-7881

3,5,6,7,8,3',4'- Heptamethoxy flavones $Me0 \rightarrow OMe \rightarrow OMe$ $Me0 \rightarrow OMe \rightarrow OMe$ $Me0 \rightarrow OMe \rightarrow OMe$	25 & 50 mg/kg	BCCAO for 12min reperfusi on 72 hr	Y-maze test, Immunofluorescence for confocal microscopy	Protected against ischemia-induced memory dysfunction, rescued neuronal cell death in the CA1 cell layer, increased the production of BDNF, stimulated the autophosphorylation of CaMK II and suppressed microglial activation in the hippocampus [32].
Rosiglitazone	3 mg/kg	BCCAO reperfusi on 24 or 72 hr	Measurement of reduced glutathione (GSH) in brain tissue, Measurement of malondialdehyde (MDA) in brain tissue, Measurement of myeloperoxidase (MPO),	PPAR-γ agonist, demonstrated preservation of cell viability of CA1 hippocampal region and attenuation of brain edema. They also showed elevated levels of GSH and low levels of the other parameters In vitro, rosiglitazone dose- dependently inhibited ROS generation by neutrophils [33].
Puerarin H H H H H H H H H H H H H	2.62, 7.86 and 23.59 mg/kg	MCAO for 2 h	Cell viability, Oxygen glucose deprivation/reperfus ion assay, Flow cytometry, Immunohistochemist ry, Western blot analysis, Nissl stain	Puerarin treatment significantly improved the phosphorylation level of AKT in dose- dependent, reduced the infarct volume, The number of Nissl body, cleaved caspase-3 and GFAP positive cells increased [18].

CONCLUSION

Stroke is a destructive experience which can result in permanent disability in brain. There is no permanent drug which can improve the blood flow at infracted area and also improve the neurological deficit. Due to the lack of treatments available for stroke, many researchers will investigated the suitable plants or drugs for the treatment of this disease. Numerous medicinal plants and herbal drugs are available to treat stroke, some of the plants are *Ginkgo biloba, Fructus Chebulae,* Pomegranate, *Rosa laevigata,* Garlic, *Leonurus heterophyllus,* Olive, Grape, *Allium cepa,* drugs.

↓ REFERENCES

1. V. L. Feigin, "Stroke in developing countries: can the epidemic be stopped and outcomes improved?" The Lancet Neurology, vol. 6, no. 2, pp. 94–97, 2007.

2. Madl, C., Holzer, M., 2004. Brain function after resuscitation from cardiac arrest. Curr. Opin. Crit. Care 10, 213–217.

3. Choe, S.C., Kim, H.S., Jeong, T.S., Bok, S.H., Park, T.B., 2001. Naringin as an anti-atherogenic effect with the inhibition of intracellular adhesion molecule-1 in hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol. 38, 947–955.

4. Jeon, S.M., Bok, S.H., Jang, M.K., Lee, M.K., Nam, K.T., Park, Y.B., Rhee, S.J., Choi, M.S., 2001. Antioxidative

activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci. 69, 2855–2866.

5. K. Baker, C. B. Marcus, K. Huf fman, H. Kruk, B. Malfroy, and S. R. Doctrow, "Synthetic combined superoxide dismu-tase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury," Journal of Pharmacology and Experimen-tal Therapeutics, vol. 284, no. 1, pp. 215–221, 1998.

6. S. Cho, E.-M. Park, M. Febbraio et al., "T he class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia," Journal of Neuroscience, vol. 25, no. 10, pp. 2504–2512, 2005.

7. U. Dirnagl, U. Lindauer, A. Them et al., "Global cerebral ischemia in the rat: online monitoring of oxygen free radical production using chemiluminescence in vivo," Journal of Cere-bral Blood Flow and Metabolism, vol. 15, no. 6, pp. 929–940, 1995.

8. Z. G. Zhang, X. Sun, Q. Z. Zhang, and H. Yang, "Neuroprotec-tive effects of ultra-low molecular- weight heparin oncerebral ischemia/reperfusion injury in rats: involvement of apoptosis, inflammatory reaction and energy metabolism," International Journal of Molecular Sciences, vol. 14, pp. 1932–1939, 2013.

9. C. N. Oliver, P. E. Starke-Reed, E. R. Stadtman, G. J. Liu, J. M. Carney, and R. A. Floyd, "Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain," Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 5144–5147, 1990.

10. K. A. Youdim, J. P. E. Spencer, H. Schroeter, and C. Rice-Evans, "Dietary flavonoids as potential neuroprotectants," Biological Chemistry, vol. 383, no. 3-4, pp. 503–519, 2002.

11. J. P. E. Spencer, H. Schroeter, A. J. Crossthwaithe, G. Kuhnle, R. J. Williams, and C. Rice-Evans, "Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts," Free Radical Biology and Medicine, vol. 31, no. 9, pp. 1139–1146, 2001.

12. P. H. Chan, "Role of oxidants in ischemic brain damage," Stroke, vol. 27, no. 6, pp. 1124–1129, 1996.

13. C. Rice-Evans, "Flavonoid antioxidants," Current Medicinal Chemistry, vol. 8, no. 7, pp. 797–807, 2001.

14. Xu, L. and Wu, F., 2015. Cryptanalysis and improvement of a user authentication scheme preserving uniqueness and anonymity for connected health care. Journal of medical systems, 39(2), p.10.

15. Gaire, B.P. and Kim, H., 2014. Neuroprotective effects of Fructus Chebulae extracts on experimental models of cerebral ischemia. Journal of Traditional Chinese Medicine, 34(1), pp.69-75.

16. Ahmed, M.A., El Morsy, E.M. and Ahmed, A.A., 2014. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life sciences, 110(2), pp.61-69.

17. Jung, Y.S., Park, D.I., Kim, Y.H., Lee, J.H., Seo, P.J., Cheon, J.H., Kang, H.W. and Kim, J.W., 2015. Efficacy and safety of CT-P13, a biosimilar of infliximab, in patients with inflammatory bowel disease: A retrospective multicenter study. Journal of gastroenterology and hepatology, 30(12), pp.1705-1712.

18. Wang, N., Zhang, Y., Wu, L., Wang, Y., Cao, Y., He, L., Li, X. and Zhao, J., 2014. Puerarin protected the brain from cerebral ischemia injury via astrocyte apoptosis inhibition. Neuropharmacology, 79, pp.282-289.

19. Zhang, S., Qi, Y., Xu, Y., Han, X., Peng, J., Liu, K. and Sun, C.K., 2013. Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia–reperfusion injury through suppression of apoptosis and inflammation. Neurochemistry international, 63(5), pp.522-532.

20. Cervantes, M.I., de Oca Balderas, P.M., de Jesús Gutiérrez-Baños, J., Orozco-Ibarra, M., Fernández-Rojas, B., Medina-Campos, O.N., Espinoza-Rojo, M., Ruiz-Tachiquín, M., Ortiz-Plata, A., Salazar, M.I. and Rubio-Osornio, M., 2013. Comparison of antioxidant activity of hydroethanolic fresh and aged garlic extracts and their effects on cerebral ischemia. Food chemistry, 140(1), pp.343-352.

21. Liang, H., Liu, P., Wang, Y., Song, S. and Ji, A., 2011. Protective effects of alkaloid extract from Leonurus heterophyllus on cerebral ischemia reperfusion injury by middle cerebral ischemic injury (MCAO) in rats. Phytomedicine, 18(10), pp.811-818.

22. Mohagheghi, F., Bigdeli, M.R., Rasoulian, B., Hashemi, P. and Pour, M.R., 2011. The neuroprotective effect of olive leaf extract is related to improved blood–brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine, 18(2), pp.170-175.

23. Wang, Q., Chen, Z.H. and Ding, Z.X., 2009. Performance of abrasive wear of WC-12Co coatings sprayed by

HVOF. Tribology International, 42(7), pp.1046-1051.

24. Kumar, A., Bora, K.S., Jaggi, A.S. and Shri, R., 2016. Comparative evaluation of neuroprotective effect of three varieties of Allium cepa in chronic constriction injury induced neuropathic pain. Thai Journal of Pharmaceutical Sciences (TJPS), 40(1).

25. Hu, Y., Duan, M., Liang, S., Wang, Y. and Feng, Y., 2015. Senkyunolide I protects rat brain against focal cerebral ischemia–reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain research, 1605, pp.39-48.

26. Cheng, D.T., Mitchell, T.N., Zehir, A., Shah, R.H., Benayed, R., Syed, A., Chandramohan, R., Liu, Z.Y., Won, H.H., Scott, S.N. and Brannon, A.R., 2015. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. The Journal of Molecular Diagnostics, 17(3), pp.251-264.

27. Park, E., Choi, S.K., Kang, S.W., Pak, Y.K., Lee, G.J., Chung, J.H. and Park, H.K., 2015. Cerebral ischemiainduced mitochondrial changes in a global ischemic rat model by AFM. Biomedicine & Pharmacotherapy, 71, pp.15-20.

28. Shi, Q.J., Wang, H., Liu, Z.X., Fang, S.H., Song, X.M., Lu, Y.B., Zhang, W.P., Sa, X.Y., Ying, H.Z. and Wei, E.Q., 2015. HAMI 3379, a CysLT 2 R antagonist, dose-and time-dependently attenuates brain injury and inhibits microglial inflammation after focal cerebral ischemia in rats. Neuroscience, 291, pp.53-69.

29. S. S. Huang, M. C. Tsai, C. L. Chih, L. M. Hung, and S. K. Tsai, "Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia," Life Sciences, vol. 69, no. 9, pp. 1057–1065, 2001.

30. Sarma, B., Ray, R.S., Mohanty, S.K. and Misra, M., 2014. Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition. Applied Surface Science, 300, pp.29-36.

31. Liu, K., Yan, M., Zheng, X. and Yang, Y., 2014. The dynamic detection of NO during the ischemic postconditioning against global cerebral ischemia/reperfusion injury. Nitric Oxide, 38, pp.17-25.

32. Okuyama, S., Morita, M., Miyoshi, K., Nishigawa, Y., Kaji, M., Sawamoto, A., Terugo, T., Toyoda, N., Makihata, N., Amakura, Y. and Yoshimura, M., 2014. 3, 5, 6, 7, 8, 3', 4'-Heptamethoxyflavone, a citrus flavonoid, on protection against memory impairment and neuronal cell death in a global cerebral ischemia mouse model. Neurochemistry international, 70, pp.30-38.

33. Al Rouq, F. and El Eter, E., 2014. PPAR-γ activator induces neuroprotection in hypercholesterolemic rats subjected to global cerebral ischemia/reperfusion injury: In vivo and in vitro inhibition of oxidative stress. Experimental gerontology, 51, pp.1-7.